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Abstract

This paper presents a rotation-invariant embedded platform
for simulating (neural) cellular automata (NCA) in modular
robotic systems. Inspired by previous work on physical NCA,
we introduce key innovations that overcome limitations in
prior hardware designs. Our platform features a symmetric,
modular structure, enabling seamless connections between
cells regardless of orientation. Additionally, each cell is
battery-powered, allowing it to operate independently and re-
tain its state even when disconnected from the collective. To
demonstrate the platform’s applicability, we present a novel
rotation-invariant NCA model for isotropic shape classifica-
tion. The proposed system provides a robust foundation for
exploring the physical realization of NCA, with potential ap-
plications in distributed robotic systems and self-organizing
structures. Our implementation, including hardware, soft-
ware code, a simulator, and a video, is openly shared at:
https://github.com/dwoiwode/embedded_nca

Introduction
In nature, various phenomena, such as crystal formations
and zebra stripes, can be described by cellular automata
(CA) (Shah et al., 2022; Graván and Lahoz-Beltra, 2004).
CA are used for modeling discrete and dynamic systems.
They consist of simple cells that change their state simulta-
neously, following a uniform update rule applied to all cells.
This rule is constrained in a way that allows only local inter-
actions with neighboring cells. Despite this, life-like struc-
tures can emerge on 2D grids with relatively simple rules
as in Conway’s “Game of Life” (Gardner, 1970). Identify-
ing update rules that produce emergent behavior is a difficult
process, often carried out by hand in the past. Neural cellular
automata (NCA) seek to address this by learning the update
rule through a neural network (Mordvintsev et al., 2020).
They keep the local property of CA (e.g. a 3 × 3 neighbor-
hood on a 2D grid) and use stochastic gradient descent to
optimize the update rule regarding a given target pattern.

Realizing software simulations in the physical domain
often exposes gaps between modeled behavior and real-
world dynamics. In modular robotic systems, this presents
a unique challenge, as the absence of global communication
restricts information exchange to strictly local interactions.
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Figure 1: Structural breakdown of a single cell’s hardware
components.

Our work is closely related to the inspiring idea by Walker
et al. (2022) to bring NCA into the physical world. How-
ever, several assumptions in their paper lead to limitations
that are addressed by our proposed hardware. While prior
work employs male and female header pins to ensure sta-
ble connections, this approach enforces a fixed orientation,
which our design aims to overcome. The proposed hard-
ware is symmetric, allowing any side to connect seamlessly
with any side of another cell. The previous paper supplies
power via cable, which introduces two key limitations: all
active cells draw current through a single connection, lead-
ing to increased load issues, and modules cannot be rear-
ranged while powered. In contrast, the proposed implemen-
tation utilizes battery-powered cells, enabling them to re-
tain their state even when disconnected from the collective.
Since each unit operates independently, they can be assem-
bled into swarms of virtually any size.

To summarize, the core contributions of our work in-
clude:
• We developed a portable, square-shaped robotic module

that operates independently of its horizontal orientation
and communicates with its four adjacent neighbors (see
Hardware Design).

• We present a novel rotation-invariant NCA capable of
classifying shapes regardless of their orientation (see

https://github.com/dwoiwode/embedded_nca


Training a physical NCA).
• We analyze the effect of our rotation-invariant training

methods and show their performance enhancements (see
Experiments).

Related Work
A CA is a computational model with a set of “cells” on a d-
dimensional grid that update their state over time based on
their local neighbors using the same update rule (Neumann,
1966). A cell state s can range from a single boolean vari-
able to a high-dimensional vector. A classic example of a
CA is Conway’s “Game of Life” Gardner (1970), illustrat-
ing the emergence of complexity from simple local rules on
a two-dimensional grid. Throughout the remainder of this
work, CA refers to a two-dimensional cellular automaton
with a cell state s ∈ Rc.

A neural cellular automaton (NCA) is a special type of
CA which was introduced by Mordvintsev et al. (2020). It
is characterized by the update rule which is represented by
a neural network. Each cell state of a NCA has c differ-
ent channels in which cell specific information can be en-
coded. The NCA can use certain channels arbitrarily as hid-
den channels, whereas others are reserved for interpretable
purposes. Common examples include a RGB color repre-
sentation in the first 3 channels (Mordvintsev et al., 2020;
Niklasson et al., 2021b; Otte et al., 2021), a classification
output (Randazzo et al., 2020), segmentation masks (San-
dler et al., 2020) or even gene encodings (Stovold, 2023).

The cellular update rule of a NCA is split in two parts.
First, a cell perception is computed by applying various
convolutional kernels. The kernels operate channel-wise,
and their outputs are concatenated to form the perception
vector P . While fig. 7 shows the kernels applied in our
setup, a typical NCA allows for arbitrary local kernels. Once
the cell perception is computed, the state update ∆s is de-
termined solely based on the perceptual information. This
process involves a relatively small neural network, typically
containing fewer than 10,000 parameters, which makes them
a perfect fit for small embedded hardware. More details on
NCA, based on our architectural design, are provided in sec-
tion Training a physical NCA.

Since the influential paper by Mordvintsev et al. in 2020,
this subject has been the focus of many papers. In recent
years, more than 50 publications have been produced, which
are aggregated and continuously updated in a repository by
Woiwode et al. (2025). Next, we present works which are
relevant for this paper. Oliveira and de Oliveira (2008) pub-
lished an approach to use CA for 2D pattern recognition.
Randazzo et al. (2020) build on this idea and proposed an
NCA which is capable of recognizing handwritten digits
(Lecun et al., 1998). The task of each cell in the NCA is
to locally predict the global digit encoded by the structure.
Through repeated local exchanges of state, cells are able to
indirectly communicate with distant parts and agree on a

unified decision. Walker et al. applied this concept in 2022
in a real-world setting by constructing modular robotic de-
vices that emulate NCA to classify their global shape. Hard-
ware limitations required replacing the commonly used 3×3
Moore neighborhood with the more constrained Von Neu-
mann neighborhood, reducing each cell’s accessible infor-
mation (Neumann, 1966). Similar to other NCA approaches,
their system depends on robots being aligned in a specific
direction.

Later studies introduce a concept where each cell is given
an individual orientation (Mordvintsev et al., 2022; Ran-
dazzo et al., 2023). This concept is also used in our hard-
ware implementation and further details will be presented in
section “Hardware-aware training strategies”.

Hardware Design
The Kilobots, presented by Rubenstein et al. (2012), set a
new standard for developing scalable and affordable robot
swarms. In this section, we introduce the proposed hardware
architecture, which draws inspiration from Walker et al.
(2022) but further enables distinctive novel features such as
persistent state, diverse rotations, and enhanced output ca-
pabilities. Therefore, the hardware must meet three primary
requirements:

1. Each cell must be capable of communicating its current
state to its four neighboring cells in any of the four rota-
tional positions.

2. Each cell should be able to display output via an array of
colored Light Emitting Diodes (LEDs).

3. Each cell must be powered by a battery to enable seamless
disconnection and reconnection with other cells without
losing its state.

The first requirement has two major consequences for the
design. Firstly, a cell needs to be fitted with a genderless
connector. Walker et al. use pin headers for north/east and
sockets for south/west placed in the center of each edge.
This prevents the rotation of the cell. Our design uses two
connectors per edge – one male and one female – which re-
sults in an interface independent of the cell’s rotation. To
further simplify the handling of the cells, spring actuated
pins and corresponding counter parts were chosen. In to-
tal, each edge connects 6 pins, of which two pins each are
used for power and ground. The remaining pins are used
to communicate between the two cells using the Universal
Asynchronous Receiver / Transmitter (UART) protocol.

Secondly this directly requires that the microcontroller is
able to communicate over four UART channels at the same
time. Many microcontroller in the low-budget range only
support one or two interfaces, forcing to use a software
driven implementation for the remaining channels. While
technically possible, it reduced the amount of computation
time available for the main calculations and additionally
complicates the firmware design. In our case we selected
the RP2350 microcontroller by Raspberry Pi Ltd (Raspberry
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Figure 2: The top (left) and bottom side (right) of the custom
PCB.

Pi, 2025) as it is both low-budget and can support more than
four hardware-supported UART channels.

To satisfy our second requirement, we chose to implement
an array of 25 LEDs in a grid of 5 × 5 which is shown on
the left side of fig. 2. This enables many different output
patterns and a straightforward output of the current cell state.
As LED component a WS2812B-2020 was selected since it
has RGB color output, a small spatial footprint and allows
controlling a whole chain by only one data pin.

To be able to move a cell freely without any outgoing
cables, an additional battery circuitry was added, which
sits diagonally at the center of the Printed Circuit Board
(PCB) (see right side of fig. 2). It stabilizes the battery
voltage to usable supply voltages of 5 and 3.3V for all
components and enables its charging via universal serial
bus (USB) or the edge connector. To prevent any dam-
age to the battery, a battery protection circuit is included.
To balance physical size, ease of maintenance and capacity
a rechargeable battery in the CR123A form factor was se-
lected (34mm× 16mm �, 700mAh).

The final design of the custom 4-layer PCB as presented
in fig. 2 measures 49mm×49mm. The top side (left) only
contains the LED array; the bottom side houses any other
components, i.e. the connectors, the microcontroller, but-
tons and an 3-axis accelerometer for user interaction, an
USB and debug connector, the battery contacts, and the
power and battery circuitry. Figure 3 presents the interac-
tion of the different components.

Beyond the PCB, the hardware of a cell consists of four
3D-printed parts as well as eight magnets allowing a quick
and stable connection of multiple cells. The whole stack is
displayed in fig. 1. A 3D-printed base houses the battery
and magnets. The PCB is placed on the top. To reach the
buttons, two extension pins are inserted through the base. A
translucent cover protects the electronics and improves the
perceptibility by scattering of the emitted light.
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Figure 3: Different components used in the hardware design.

Firmware
The main purpose of the implemented microcontroller
firmware lies in three tasks: The communication with neigh-
boring cells and therefore receiving and sending state, the
calculation of the next state based on the current and re-
ceived state and the display of the output. The firmware is
implemented in C using the “PICO C SDK” (Raspberry Pi,
2024).

For the first task, the four bidirectional ports are used.
Each port is connected to one edge connector and uses the
UART protocol. As the RP2350 only has two hardware
UART interfaces, two Programmable Input Output (PIO)
units of the microcontroller where used; one for transmitting
data and one for receiving the incoming data. The PIO units
provide four in- or outputs each and can be used to emu-
late different transfer protocols. This flexibility also give the
possibility to adapt existing protocols beyond their typical
configuration options. In our case, we chose to implement a
UART protocol with a word with of 32 bit, simplifying the
transmission of single precision floating point numbers used
for state representation. A baud rate of 115 200 kBd was se-
lected. The transfer is initiated by moving the data to be sent
to the corresponding PIO data queues. On the receiving site,
the data is deserialized and placed into the PIO’s receiver
queues. An interrupt is issued to allow further processing by
the main core.

Within the second step, the calculation based on the cur-
rent state of the cell and its neighbors is performed. There-
fore, all states are combined to a single tensor and fed to a
configurable calculation engine. Inspired by similar frame-
works as TensorFlow Lite, a program is represented by a
header, a set of tensors and an operations list. Its structure is
presented in fig. 4.

The header contains mandatory information as the ver-
sion of the model, the size of the cell state c, the number of
tensors and operations and delays used to control the tim-
ing behavior. The set of tensors is represented by a list of
pointer and can be split into two distinct types: On the on
hand a tensor can be immutable (read only=R). Those ten-
sors are used to provided values e.g. weights needed by
the performed operations. Their content is stored directly
in the program and cannot be changed. On the other hand
there are modifiable tensors used to store intermediate re-



Program
Header

R1: 0x0000
...

R5: 0x0204R
ea

d
on

ly

W6: 0x0000
...

W9: 0x0102W
ri

ta
bl

e

OP1: 1 + 2 → 6
...

...

...

Engine
Current State

W0: 0x0000

Own
North
East
South
West

Buffer
...

...

...

Output
W255: 0x0000

Figure 4: Program and data structure and its interaction with
the engine.

Code Name Description
0x00 NOP No operation
0x01 ADD Add two tensors
0x02 MAT MUL Matrix multiplication on two tensors
0x03 RELU Apply relu on tensor
0x04 FILL Fill tensor with value
0x05 MAX Calculate maximum over tensor
0x06 SOFTMAX Calculate softmax over tensor
0x07 STEP Apply step function to tensor
0x08 MUL Multiplication on two tensors
0x0B FILL RAND Fill tensor with random value
0x0C ARG MAX Calculate argmax over tensor

Table 1: List of implemented operations.

sults (writable=W). Their contents are stored within a global
buffer area and referenced by the pointer value. Each tensor
has a 8 bit, where 0 is reserved for the current state and 255
for the output tensor. The output tensor has the dimension
25×3 where each LED has three channels used to represent
red, green, and blue. The operation list contains operation
descriptors, which are processed linearly from start to end
in each update cycle. Each descriptor starts with a opera-
tion identifier which is used to select the correct operation.
Currently, the engine supports 11 different operations listed
in table 1. It is also possible to add further operations by
extending the engine to support other calculation steps. It
is followed by a operation specific amount of source and
destination tensor identifiers or constant values. For exam-
ple the operation ADD takes two source and one destination
tensor identifier as well as the length of the tensors. Dur-
ing program generation is must be assured that all tensors
are at least as long as specified in the operations as those
constraints are not checked during calculation.

In the last step, the written output is display via the LED
array on the top. The third available PIO is used to generate
the control signals for the WS2812B LEDs. This way the
values can directly be shifted in an output queue and are
automatically transferred to the LEDs.

In addition to the three main tasks, the firmware handles
input data of the connected accelerometer. Currently, the
values are only used to detect if the cell is flipped upside-

(a) 2D world with cells (b) Selected cell information

(c) Model weights (d) Operations list (model)

Figure 5: Different core parts of the simulation environment.

down to initiate a power off. In future work, it is planned to
enable access to those value from the calculation engine to
include them in a program. Also, a debug interface is im-
plemented to transfer the current cell state and performance
parameters via the USB interface.

The PCB layout, microcontroller firmware, simulator and
3D model files are open source and available in our code.

Simulator
To perform experiments quickly without the need to compile
the firmware and apply it to all hardware cells, a simulator
running in the browser was developed. It can be used to
simulate and debug different programs.To ensure simulation
accuracy, the firmware calculation engine is embedded as
WebAssembly into the application.

Examples images of the simulator are displayed in fig. 5.
The main part of the simulator are cells, displaying their cur-
rent output, that can be moved and rotated (5a). A simu-
lation can be controlled by different buttons as start, step
and stop. Furthermore, it is possible to select other (pre-
compiled) models, upload own models and chose different
simulation techniques. The state of a selected cell can be
inspected within an information overview (5b). These in-
clude the current state, the received neighbor states and the
buffer containing the content of intermediate tensors as well
as the output. The simulator also shows data on the used
model e.g. the data of the immutable included tensors (5c).
Additionally a list of operation is displayed (5d).

Training a physical NCA
To minimize the required capabilities of the embedded hard-
ware, we separated the training loop from the firmware of
the robots. This section will focus on the training proce-
dure, which is implemented using a modular PyTorch frame-
work. We present specific adaptations necessary for achiev-
ing rotation-invariant training. The framework and the train-



ing code is made open source and can be found in our code
repository.
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Figure 6: Overview of our NCA model. The use of a task
head to generate task-specific outputs is optional and not im-
plemented in all models.

An overview of our NCA model can be seen in fig. 6. Our
CA is based on a 2D grid of cells, where each cell can see
the state of their directly adjacent cells (“4-neighborhood”)
(Neumann, 1966)).

The perception is built upon a combination of different
kernels K that are adapted to our 4-neighborhood, as shown
in fig. 7. “Gradient X” and “Gradient Y” are simple gradient
filters similar to Sobel filter (Sobel and Feldman, 1973). The
“Von Neumann” is a isotropic kernel that sums all neighbor-
ing values. The “Identity” is simply the own state of the cell.
These kernels are applied independently per channel and the
results are subsequently concatenated to form a perception
vector P ∈ Rc·nk , where nk is the number of kernels ap-
plied.

P = concat
(
K1

cw
⊗ s, K2

cw
⊗ s, . . . , Knk

cw
⊗ s
)
, (1)

where
cw
⊗ denotes a channel-wise convolution. In this

context, s refers to the state configuration of the entire
CA, where the kernels inherently account for the local 4-
neighborhood interactions. Constant zero-padding is used at
the boundary regions, as this accurately represents inactive
cells.

We calculate the next state for a cell following a simple
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Figure 7: The perception kernels used for our NCA model.

update rule

H = ReLU(P ·W1 +B1), (2)
∆s = H ·W2 +B2, (3)

sn+1 = sn +∆s, (4)

where Wi and Bi are the learnable weights and bias of the
i-th layer of the neural network respectively and ReLU is the
Rectified Linear Unit activation function (Nair and Hinton,
2010).

A training iteration starts with a seed state s0 and applies
the NCA update rule T times, where T is randomly sam-
pled between 10 and 40 for our experiments. Instead of the
commonly used cross-entropy loss for classification, a mean
squared error (MSE) against a one-hot encoded class label
l is used, as it yielded more stable training results Walker
et al. (2022); Randazzo et al. (2020).

In contrast to a classical NCA, we added an optional task
specific head layer. Consequently, the number of channels
needed is less constrained by the task. For example, clas-
sifying 29 categories typically requires at least 29 channels,
yet one-hot encoding causes most channels to remain near
zero, conveying minimal information. With a classification
layer, the NCA is able to learn a latent space representation
of the classification. To keep the spirit of the original NCA,
only a part of the final state is forwarded to this layer. This
preserves the benefit of hidden channels, which can serve
purposes beyond the primary task, such as encoding spatial
relationships with neighboring cells. The task head layer
only has to be used when the NCA is evaluated and has no
direct impact on the further state. We apply the loss defined
in eq. (10) and train the model using gradient descent and
the Adam optimizer (Kingma and Ba, 2014).

Hardware-aware training strategies
While the preceding section outlines the (mostly) standard
training procedure for NCA, the characteristics and con-
straints of our robot hardware impose specific considerations
that must be integrated into the training process.

Setting the first channel of each cell always to 1 ensures
that the cells are able to sense each other. Otherwise, lacking
neighbors can be indistinguishable from having a neighbor-
ing cell in a “dead” state, defined as a zero vector. We use
this channel to apply a (modified1) “Alive-Masking” to the
cells (Mordvintsev et al., 2020; Randazzo et al., 2020).

∆s′ =

{
∆s if cell is active
0 otherwise

(5)

As our robots are designed to be rotation invariant, we
also incorporate this aspect in our training. With our hard-
ware, the cells can be physically rotated to achieve a dif-
ferent orientation. During training we add an extra channel

1The original Alive-Masking also takes neighboring cells into
account. We limit this to the own cell state.



to our NCA that represents the orientation angle θ of this
cell. This angle cannot be directly perceived by any cell, in-
cluding itself, and it is inherently accommodated within the
hardware design due to the physical capability to rotate the
cells, rather than explicitly encoded. We then apply a 2D
rotation matrix to rotate our gradient perceptions Px and Py

at θ to get P ′
x and P ′

y using following formula[
P ′
x

P ′
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
Px

Py

]
. (6)

The same concept already has been used by Mordvintsev
et al. (2020) on a global scale and by Randazzo et al. (2023)
for each cell. Their approaches are modified by discretizing
θ into four predefined rotations: 0◦, 90◦, 180◦, 270◦. θ is
fixed during one training iteration and cannot be changed by
the NCA itself.

While other implementations focus on getting a correct
result at a specific simulation step (Walker et al., 2022), we
want to achieve a stable configuration over a long time. We
therefore make use of a training pool (Mordvintsev et al.,
2020). A pool of samples is initialized with corresponding
seed and target configurations. At the start of one training
iteration, a batch of samples is drawn from this pool. Then,
this batch is propagated through the NCA and evaluated as
described above. At the end of each training iteration, the
selected batch is added back to the sample pool, enabling
longer episode durations over time. In this process, knew ran-
dom samples are substituted with new seeds and targets, pre-
venting the unlearning of previous iterations. Furthermore,
kreplaced random samples are altered to new targets, where
only the channel indicating the living cells and θ are modi-
fied, but the overall cell state keeps intact. This modification
was essential for enabling the models to learn to recognize
new shapes. Otherwise, they remained stuck in a fixed state,
despite changes in configuration.

We simulate an asynchronicity of cells by adding a ran-
dom dropout mask to ∆s. It has been shown that this makes
the model more robust to pertubations in the state of the CA
(Niklasson et al., 2021a). We also add a small normal dis-
tributed noise (σ = 2 · 10−2) to each update that is not af-
fected by the dropout, which further helps the model to re-
cover from small pertubations (Randazzo et al., 2020).

After training a model, the corresponding network struc-
ture and model weights have to be converted into a format
that is recognizable by the firmware. During this step most
modifications explained in this section are stripped, as they
are only relevant during training. Because each cell deter-
mines its next state independently, the overall neural net-
work is minimal and can be summarized by equations (1)–
(4).

Experiments
We show the capabilities of our robotic models in two dif-
ferent experiments. In the first experiment, we evaluate our

hardware using a hand-crafted model. For this we use a task
called “firefly-synchronization”, where different cells have
to agree on a common clock frequency.

In the second experiment, we reproduce the classic shape
classification for simple digits using a NCA. We also extend
this experiment using rotation invariant polyominoes up to
a degree of 5. Our results show that cells can be added,
removed or shifted in the configuration and also keep their
state while being alone.

Firefly Synchronization
To demonstrate the capabilities of our hardware and
firmware, we choose the “firefly-synchronization” task.
The synchronization of pulse-coupled oscillating cells is a
widely researched topic (Mirollo and Strogatz, 1990; Brand-
ner et al., 2016; Ramı́rez-Ávila et al., 2019). Each cell has
an internal clock which can be adjusted by interacting with
their local neighbors to achieve synchrony. When the in-
ternal clock reaches its period time of 1 it resets and the
cell emits a pulse which can be perceived by other cells.
Their goal is to reach a global synchronization with decen-
tralized actions and is inspired by the natural behavior of
fireflies flashing in unison. We adapt and implement this al-
gorithm for our cell-like robots using the “Von Neumann”
kernel shown in fig. 7. Algorithm 1 shows a pseudocode of
our implementation.

Algorithm 1 Pseudocode of a single cell update step.

procedure CELLUPDATE( )
state← state + k
if neighbor flash detected() then

state← state + (k · state) + random noise
end if
if state ≥ 1 then

FLASH( )
state← 0

end if
end procedure

We compute a circular standard deviation σ◦ from direc-
tional statistics for all n cells with a phase angle φ:

R =
1

n

√√√√( n∑
i=1

sinφi

)2

+

(
n∑

i=1

cosφi

)2

(7)

σ◦ =

√
−2 lnR
2π

(8)

In contrast to a normal standard deviation, a circular stan-
dard deviation takes into account that the φ wraps around
so that 0 ≡ 1 mod 1. As seen in fig. 9 the cells find a
common phase after roughly 2 minutes in our simulation.
This behavior can also be observed qualitatively as seen in
fig. 10. This time could be adjusted by changing the phase
shift parameters k.



Figure 9: Standard deviation of the cell phases over time.
Initially, the phases are randomly distributed. The simula-
tion involves 29 cells arranged in a circle with a diameter of
5.

Figure 10: Simulator screenshots illustrating the firefly syn-
chronization experiment setup. Cell brightness represents
phase value; red cells indicate flashes. Left: initial random
cell initialization. Right: setup after 90 s.

(a) Digits dataset. (b) Polyomino-4 dataset.

Figure 11: Datasets used for shape classification.

Shape Classification
Inspired by Randazzo et al. (2020) and Walker et al. (2022),
we test our robot model using a self-classifying shape detec-
tion task. We create four different datasets for this task:
• digits: Represents all digits from 0 to 9. This dataset is

visualized in fig. 11a.
• digits-symmetric: Represents only digits from 0 to 8, as

“6” and “9” look the same when rotated by 180◦.
• polyomino-4: All different polyominoes up to a degree of

4 without accounting for the rotation of the shapes. This
dataset is visualized in fig. 11b.

• polyomino-5: All different polyominoes up to a degree of
5 without accounting for the rotation of the shapes.
The architecture of the NCA is described in section Train-

ing a physical NCA. For the perception, we use the iden-
tity and two gradient kernels for X- and Y-direction which
can be rotated during training as previously described. One
might be tempted to use an already isotropic kernel, but
this approach is limited by the inability to distinguish cer-
tain shapes (e.g., both polyominoes of degree 3). Therefore
we use our rotation-invariant training described in section

1 2 3 4 5 6 7

891011121314

15 16 17 18 19 20 21

Figure 8: Example sequence of images from a video demonstrating the shape recognition. Some frames (e.g. 6 and 7) show
intermediate states before classifying the correct shape again (frame 8). Frames 10–13 demonstrate the ability to rotate a tile.
The full video can be seen on our project page.



Inference Steps
Dataset 50 100 150
digits (n) 0.90± 0.01 0.90± 0.02 0.90± 0.02
digits 0.81± 0.09 0.80± 0.08 0.80± 0.08
digits-sym 0.96± 0.03 0.95± 0.03 0.95± 0.03
polyomino-4 0.84± 0.04 0.83± 0.04 0.84± 0.04
polyomino-5 0.40± 0.02 0.40± 0.02 0.39± 0.03

Table 2: Classification accuracy after several steps for dif-
ferent datasets.

Hardware-aware training strategies.
The final classification output o(i) for a cell i is either

computed via the learned classification layer WC ∈ RR×C

applied to the state channels sn[: R], or directly taken from
a subset of state channels.

o =

{
sn[: R] ·WC if classification layer is used
sn[1 : C + 1] otherwise

(9)

L =
1

N

N∑
i=1

(o(i)− l)
2
, (10)

where C is the number of classes, R is the number of chan-
nels used for the classification layer and N is the number of
active cells.

The classification output o is used to compute a weighted
sum of a predefined 5×5 visual representation of each class,
which can be rendered on the LED screen. When the model
is confident, o approximates a one-hot vector, resulting in
a clear class image; otherwise, a visual blend of multiple
classes may appear (see e.g. frame 3 in fig. 8).

Per default, a batch size of 512, a sample pool size of
5120, 14 channels per cell state, 120 neurons for the hidden
layer of the update function, and a classification layer which
takes the first 10 channels as input is used. A series of im-
ages from the resulting default model can be seen in fig. 8.

We evaluate the impact of the training methods by con-
ducting several experiments. Each experiment is repeated
5 times, reporting the mean and standard deviation. Perfor-
mance is measured using classification accuracy, which ver-
ifies whether the argmax of the classification output matches
the target label.

Firstly, the default training parameters are used to train a
NCA for each dataset. The classification remains stable As
expected, the polyomino-5 dataset is the hardest dataset,
as it has the most different classes. The results can be seen
in table 2.

We also investigate whether target mutation during train-
ing is essential. NCA for polyomino-4 are trained with
target replacement rates of 0, 0.1, 0.5, and 0.9, and their
long-term continuity is evaluated across 5000 iterations.
While fig. 12a indicates a negative impact of replacement,
this is challenged by the next experiment with periodic tar-

(a) Classification performance during inference with unchanged
targets. Note the logarithmic scale on the x-axis.

(b) Classification performance during inference with target changes
every 1000 steps.

Figure 12: Long-term stability analysis on the
polyomino-4 dataset with different values for tar-
get replacement during training. Shaded areas indicate
standard deviation.

get replacement every 1000 steps. Figure 12b suggests that
changes in the cell configuration lead to even more stable
classification results with a replacement rate of 0.1.

Conclusion

To summarize, we present an embedded hardware system
that can emulate 2D CA. A central aspect of our design is
its rotation-invariance, demonstrated through learning suit-
able NCA for shape classification. Our work can serve as an
effective educational tool to demonstrate the principles and
dynamics of (neural) CA to students. To this end, our work
could be extended by incorporating other NCA variants. Ad-
ditionally, our proposed output head could be leveraged to
train more complex NCA models that generate structured
outputs on the 5 × 5 LED matrix, enabling deeper insights
into emergent behavior and learning dynamics. This work
is open to extension, and we encourage the community to
contribute using our openly available hardware and software
designs.
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